Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Deliv Transl Res ; 14(1): 103-115, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37555906

RESUMO

This study aims to investigate the effect of the preparation of solid dispersions using supercritical CO2 (scCO2) on the physicochemical properties and the performance of supramolecular gels based on polymer-cyclodextrin (CD) interactions (named poly(pseudo)rotaxanes, PPR) envisaging a transdermal administration. Solid dispersions containing Soluplus®, the antihypertensive drug carvedilol (CAR), and CD (αCD or HPßCD) were prepared and characterized by HPLC, XRPD, FTIR, and DSC. PPRs prepared from solid dispersions (SCF gels) and the corresponding physical mixtures (PM gels) were analyzed regarding rheology, morphology, in vitro drug diffusion, and ex vivo drug skin permeation. The application of scCO2 led to the loss of the crystalline lattice of CAR while preserving its chemical identity. On the contrary, αCD crystals were still present in the SCF solid dispersions. SCF gels were more uniform than their corresponding PM, and the supercritical treatment resulted in changes in the rheological behavior, reducing the viscosity. CAR in vitro diffusion was significantly higher (p < 0.05) for the αCD-based SCF gel than its corresponding PM gel. Drug skin permeation showed a significant increase in drug flux from CD-based SCF gels (containing αCD or HPßCD) compared to corresponding PM gels. Additionally, the pretreatment of the skin with αCD exhibited increased CAR permeation, suggesting an interaction between αCD and the skin membrane. Results evidenced that SCF processing decisively modified the properties of the supramolecular gels, particularly those prepared with αCD.


Assuntos
Ciclodextrinas , Rotaxanos , Ciclodextrinas/química , Rotaxanos/química , Administração Cutânea , 2-Hidroxipropil-beta-Ciclodextrina , Carvedilol , Géis/química
2.
AAPS PharmSciTech ; 24(6): 156, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37468721

RESUMO

This study sought to develop polymer-lipid hybrid solid dispersions containing the poorly soluble drug lopinavir (LPV) by hot-melt extrusion (HME). Hence, the lipid and polymeric adjuvants were selected based on miscibility and compatibility studies. Film casting was used to assess the miscibility, whereas thermal, spectroscopic, and chromatographic analyses were employed to evaluate drug-excipient compatibility. Extrudates were obtained and characterized by physicochemical tests, including in vitro LPV dissolution. Preformulation studies led to select the most appropriate materials, i.e., the polymers PVPVA and Soluplus®, the plasticizers polyethylene glycol 400 and Kolliphor® HS15, phosphatidylcholine, and sodium taurodeoxycholate. HME processing did not result in LPV degradation and significantly increased entrapment efficiency (93.8% ± 2.8 for Soluplus® extrudate against 19.8% ± 0.5 of the respective physical mixture). LPV dissolution was also increased from the extrudates compared to the corresponding physical mixtures (p < 0.05). The dissolution improvement was considerably greater for the Soluplus®-based formulation (24.3 and 2.8-fold higher than pure LPV and PVPVA-based extrudate after 120 min, respectively), which can be attributed to the more pronounced effects of HME processing on the average size and LPV solid-state properties in the Soluplus® extrudates. Transmission electron microscopy and chemical microanalysis suggested that the polymer-lipid interactions in Soluplus®-based formulation depended on thermal processing.


Assuntos
Polietilenoglicóis , Polímeros , Polímeros/química , Composição de Medicamentos/métodos , Solubilidade , Polietilenoglicóis/química , Sistemas de Liberação de Medicamentos , Lipídeos , Temperatura Alta
3.
Drug Deliv Transl Res ; 13(4): 1140-1152, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36564661

RESUMO

This study aimed to investigate whether hot-melt extrusion (HME) processing can promote molecular encapsulation of a multi-component natural product composed of volatile and pungent hydrophobic substances (ginger oleoresin (OR)) with cyclodextrins. 6-Gingerol and 6-shogaol, the biomarkers of ginger OR, were quantified by HPLC. Phase-solubility studies were performed using ß-cyclodextrin (ßCD) and hydroxypropyl-ß-cyclodextrin (HPßCD) for ginger OR complexation. Solid complexes were then prepared by thermal (HME)- and solvent (slurry (SL))-based methods. Morphology, thermal behavior, solubility, in vitro dissolution, and in vivo anti-inflammatory activity were evaluated. HPßCD gave rise to AL-type complexes with ginger OR, whereas ßCD led to materials with limited solubility. Ginger OR was complexed with HPßCD by HME without significant change in gingerol and shogaol content. Additionally, thermogravimetric analysis (TGA) suggested higher volatile retention in HME complexes than in SL ones. Shogaol and gingerol solubility and dissolution significantly increased from SL and HME complexes compared with ginger OR. In turn, 1:2 OR/HPßCD HME complex showed higher 6-shogaol solubility than SL, associated with a gradual release. The carrageenan-induced pleurisy test showed that the anti-inflammatory activity of ginger OR was maintained after complexation with HPßCD. The complexes significantly decrease the levels of IL-1ß and inhibit cell migration. HME complex showed performance equivalent to the positive control and superior to the SL material. Taken together, these results indicate that HME can be useful for promoting the molecular encapsulation of complex natural products that contain volatile and thermolabile substances. HME complexes showed better in vivo and in vitro performance than complexes prepared using the solvent-based method.


Assuntos
Ciclodextrinas , Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina/química , Catecóis , Solubilidade
4.
Int J Pharm ; 586: 119510, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32531449

RESUMO

This study aimed to investigate whether hot-melt extrusion (HME) processing can modify the interactions between drugs, cyclodextrins and polymers, and in turn alter the microstructure and properties of supramolecular gels. Mixtures composed of amphiphilic polymer (Soluplus), cyclodextrin (HPßCD or αCD), plasticizer (PEG400 or PEG6000) and colloidal silicon dioxide were processed by HME. Carvedilol (CAR) was added to the formulation aiming its transdermal delivery. Extrudates were characterized by HPLC, XRPD, FTIR, DSC, and solid-state NMR. Gels prepared from extrudates (HME gels) or the corresponding physical mixtures (PM gels) in PBS were analyzed regarding components ordering (NMR, SEM), rheology, and CAR diffusion rate. HME led to the loss of the crystalline lattice of CAR and αCD, without causing any drug degradation. Solid NMR indicated that HME promoted the interaction of α-CD and HPßCD with the other components. HME gels had no coarsely disperse particles in their structure and behaved as weak gels (G' ~ G″). In contrast, PM gels contained drug crystals and showed elastic behavior (G' > G″). In general, HME gels were less viscous than PM ones and led to higher drug flux, especially those prepared using HPßCD. Moreover, the association of HPßCD and PEG6000 provided faster drug flux from supramolecular gels regardless the higher gel viscosity. The results evidenced that HME processing can decisively modify the arrangement of the components in the supramolecuar gels and, consequently, their properties, notably increasing drug release rate.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/química , Carvedilol/administração & dosagem , Excipientes/química , Rotaxanos/química , Administração Cutânea , Antagonistas Adrenérgicos beta/administração & dosagem , Antagonistas Adrenérgicos beta/química , Carvedilol/química , Química Farmacêutica , Liberação Controlada de Fármacos , Géis , Plastificantes/química , Polietilenoglicóis/química , Polímeros/química , Reologia , Viscosidade , alfa-Ciclodextrinas/química
5.
Lasers Med Sci ; 30(1): 469-73, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23975569

RESUMO

The effect of the laser irradiation (532 nm) on films prepared from Citrobacter freundii mixed with erythrosine dye was investigated by using atomic force microscopy. It was observed that morphological changes of bacterial surfaces after irradiations, which were attributed to cellular damage of the outer membranes, are a result of a photodynamic effect. The results suggested that the combination of erythrosine and laser light at 532 nm could be a candidate to a photodynamic therapy against C. freundii.


Assuntos
Citrobacter freundii/efeitos dos fármacos , Citrobacter freundii/efeitos da radiação , Corantes/farmacologia , Eritrosina/farmacologia , Lasers , Luz , Citrobacter freundii/ultraestrutura , Corantes/química , Eritrosina/química , Microscopia de Força Atômica , Propriedades de Superfície , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...